Generación aumentada de recuperación: un problema de búsqueda

Search es una infraestructura crítica para trabajar con modelos de lenguaje grande (LLM) y construir las mejores experiencias de AI generativa. Tienes una sola oportunidad para indicarle a un LLM que genere la respuesta correcta con tus datos, por lo que la relevancia es fundamental. Haz que tus LLM despeguen con generación aumentada de recuperación (RAG) y Elastic.

Video thumbnail

Prueba este aprendizaje práctico a tu propio ritmo para aprender a construir una aplicación RAG

Prueba el aprendizaje práctico

Incorpora RAG en tus aplicaciones y prueba diferentes LLM con una base de datos vectorial

Descubre más en los laboratorios de Elasticsearch

Descubre cómo crear aplicaciones avanzadas basadas en RAG con Elasticsearch Relevance Engine™

Mira el video de inicio rápido

La ventaja de Elastic

Listo para producción a escala empresarial

  • Acelerar las experiencias de AI generativa

    Despliega tus experiencias de AI generativa de forma rápida y a escala con Elasticsearch.

  • El motor de búsqueda más relevante para RAG

    Mantente a la vanguardia con técnicas de búsqueda de última generación (textual, semántica, vectorial, híbrida), herramientas de reclasificación integradas y Learning to Rank (LTR).

  • Selección de modelos simplificada

    Optimiza la selección y gestión de modelos con nuestra plataforma abierta para implementaciones de RAG eficientes, efectivas y preparadas para el futuro.

CUENTA CON LA CONFIANZA DE LAS EMPRESAS FORTUNE 500 PARA IMPULSAR LA INNOVACIÓN DE LA AI GENERATIVA

Prepara tus datos para RAG

RAG amplía el poder de los LLM al acceder a datos propietarios relevantes sin necesidad de volver a entrenarlos. Al usar RAG con Elastic, te beneficias de:

  • Técnicas de búsqueda de vanguardia
  • Selección fácil de modelos y la capacidad de intercambiar modelos sin esfuerzo.
  • Acceso seguro a documentos y basado en roles para garantizar que tus datos se mantengan protegidos.
Generación aumentada de recuperación (RAG) en acción

Transforma las experiencias de búsqueda

¿Qué es la generación aumentada de recuperación?

La generación aumentada de recuperación (RAG) es un patrón que mejora la generación de texto al integrar información relevante de fuentes de datos privados. Al proporcionar un contexto específico del dominio al modelo generativo, RAG mejora la precisión y la relevancia de las respuestas de texto generadas.

Usa Elasticsearch para ventanas de contexto de alta relevancia que aprovechen tus datos privados para mejorar la salida de los LLM y entregar la información en una experiencia conversacional segura y eficiente.

CÓMO FUNCIONA RAG CON ELASTIC

Mejora tus flujos de trabajo de RAG con Elasticsearch

Descubre cómo usar Elastic para flujos de trabajo de RAG mejora las experiencias de AI generativa. Sincroniza fácilmente con la información en tiempo real mediante fuentes de datos privados para obtener las mejores respuestas de AI generativa más relevantes.

El pipeline de inferencia de machine learning utiliza procesadores de ingesta de Elasticsearch para extraer incrustaciones de manera eficiente. Combinando sin problemas la búsqueda por coincidencia de texto (BM25) y la búsqueda vectorial (kNN), recupera los documentos con las mejores puntuaciones para generar respuestas contextualizadas.

CASO DE USO

Servicio de preguntas y respuestas que funciona con tu conjunto de datos privados

Implementa experiencias de preguntas y respuestas usando RAG, con tecnología de Elasticsearch como base de datos vectorial.

Elasticsearch: la base de datos vectorial más ampliamente desplegada

Copia para probar localmente en dos minutos

curl -fsSL https://elastic.co/start-local | sh
Leer documentos
O

Búsqueda de IA — en acción

  • Cliente destacado

    Consensus actualiza la plataforma de investigación académica con búsqueda semántica avanzada y herramientas de AI de Elastic.

  • Cliente destacado

    Cisco crea experiencias de búsqueda impulsadas por AI con Elastic en Google Cloud.

  • Cliente destacado

    Georgia State University aumenta la información sobre los datos y analiza cómo ayudar a los estudiantes a solicitar asistencia financiera mediante la búsqueda impulsada por AI.

Preguntas frecuentes

¿Qué es RAG en IA?

La generación aumentada de recuperación (comúnmente conocida como RAG) es un patrón de procesamiento del lenguaje natural que permite a las empresas buscar en fuentes de datos privados y proporcionar un contexto que sustente grandes modelos de lenguaje. Esto permite respuestas más precisas y en tiempo real en aplicaciones de AI generativa.